larq.activations
¶
Activations can either be used through an Activation
layer, or through the activation
argument supported by all forward layers:
import tensorflow as tf
import larq as lq
model.add(lq.layers.QuantDense(64))
model.add(tf.keras.layers.Activation('hard_tanh'))
This is equivalent to:
model.add(lq.layers.QuantDense(64, activation='hard_tanh'))
You can also pass an element-wise TensorFlow function as an activation:
model.add(lq.layers.QuantDense(64, activation=lq.activations.hard_tanh))
hard_tanh¶
larq.activations.hard_tanh(x)
Hard tanh activation function.
Arguments
- x
tf.Tensor
: Input tensor.
Returns
Hard tanh activation.
leaky_tanh¶
larq.activations.leaky_tanh(x, alpha=0.2)
Leaky tanh activation function. Similar to hard tanh, but with non-zero slopes as in leaky ReLU.
Arguments
- x
tf.Tensor
: Input tensor. - alpha
float
: Slope of the activation function outside of [-1, 1].
Returns
Leaky tanh activation.